Test Data AC2-09: Difference between revisions
m (Dave.Ellacott moved page SilverP:Test Data AC2-09 to Test Data AC2-09) |
|||
(91 intermediate revisions by the same user not shown) | |||
Line 27: | Line 27: | ||
{|align="center" border="1" width=" | {|align="center" border="1" width="700" | ||
|+ align="bottom"|<b>Table EXP | |+ align="bottom"|<b>Table EXP – A </b>Summary description of all test cases | ||
!align="center"|Name | !align="center"|Name | ||
!align="center"|GNDPs | !align="center"|GNDPs | ||
Line 36: | Line 36: | ||
| ||align="center"|Re||align="center"|Fuel jet composition | | ||align="center"|Re||align="center"|Fuel jet composition | ||
|align="center"|Pilot flame composition||align="center"|Detailed data | |align="center"|Pilot flame composition||align="center"|Detailed data | ||
|align="center"|DOAPs | |align="center" width="150"|DOAPs | ||
|- | |- | ||
|<b>EXP1</b>|| | |valign="top"|<b>EXP1</b>||align="center" valign="top"|22400 | ||
|C<sub>2</sub>H<sub>2</sub>, H<sub>2</sub>, air, CO<sub>2</sub> and N<sub>2</sub> | |valign="top"|25% of methane (CH<sub>4</sub>) and 75% of air | ||
|<math>\langle U\rangle, \langle U_{rms}\rangle, \langle V\rangle, | |valign="top"|C<sub>2</sub>H<sub>2</sub>, H<sub>2</sub>, air, CO<sub>2</sub> and N<sub>2</sub> | ||
\langle V_{rms}\rangle, \langle\eta\rangle,</math> <math>\langle T\rangle, | |valign="top"| | ||
<math>\langle U\rangle, \langle U_{rms}\rangle, \langle V\rangle, | |||
\langle V_{rms}\rangle, \langle\eta\rangle,</math> | |||
<math>\langle T\rangle, | |||
\langle Y_{H_2 0}\rangle, \langle Y_{O_2}\rangle, \langle Y_{N_2}\rangle, | \langle Y_{H_2 0}\rangle, \langle Y_{O_2}\rangle, \langle Y_{N_2}\rangle, | ||
\langle Y_{H_2}\rangle,</math> <math>\langle Y_{CO}\rangle, \langle Y_{CO_2}\rangle, | \langle Y_{H_2}\rangle,</math> | ||
<math>\langle Y_{CO}\rangle, \langle Y_{CO_2}\rangle, | |||
\langle Y_{CH_4}\rangle, \langle\eta_{rms}\rangle,</math> | \langle Y_{CH_4}\rangle, \langle\eta_{rms}\rangle,</math> | ||
<math>\langle T_{rms}\rangle, \langle Y_{{H_2O}_{rms}}\rangle, | <math>\langle T_{rms}\rangle, \langle Y_{{H_2O}_{rms}}\rangle, | ||
\langle Y_{{O_2}_{rms}}\rangle,</math> <math>\langle Y_{{N_2}_{rms}}\rangle, | \langle Y_{{O_2}_{rms}}\rangle,</math> | ||
<math>\langle Y_{{N_2}_{rms}}\rangle, | |||
\langle Y_{{H_2}_{rms}}\rangle, \langle Y_{{CO}_{rms}}\rangle,</math> | \langle Y_{{H_2}_{rms}}\rangle, \langle Y_{{CO}_{rms}}\rangle,</math> | ||
<math>\langle Y_{{CO_2}_{rms}}\rangle, \langle Y_{{CH_4}_{rms}}\rangle</math> | <math>\langle Y_{{CO_2}_{rms}}\rangle, \langle Y_{{CH_4}_{rms}}\rangle</math> | ||
| | |||
|align="center"|Axial profiles | |||
''T<sub>max</sub>'' , ''z/D (T<sub>max</sub> )'' | |||
L<sub>const</sub>(η , Y<sub>CH<sub>4</sub></sub> , Y<sub>O<sub>2</sub></sub>) | |||
L<sub>const</sub>(Y<sub>H<sub>2</sub>O</sub> , Y<sub>CO<sub>2</sub></sub>) | |||
Y<sub>H<sub>2</sub>, max</sub> , ''z/D'' (Y<sub>H<sub>2</sub>, max</sub> ) | |||
Y<sub>CO, max</sub> , ''z/D'' (Y<sub>CO, max</sub> ) | |||
RMS<sub>max</sub> | |||
''z/D'' (RMS<sub>max</sub> ) | |||
Radial profiles | |||
''x/D'' = 15, 30, 45 | |||
''F<sub>max</sub>'' , ''U<sub>max</sub>'' | |||
''r''<sub>½</sub>(''η'') , ''r''<sub>½</sub>(''U'' ) | |||
|} | |||
{|align="center" border="1" width="700" | |||
|+ align="bottom"|<b>Table EXP – B </b>Summary description of all measured parameters | |||
!align="center"|MP1||align="center"|MP2||align="center"|MP3||align="center"|DOAPs or other miscellaneous data | |||
|- | |||
|align="center" valign="top"|''U'', ''V'', ''u'' ′, ''v'' ′ (ms<sup>-1</sup>) | |||
|align="center" valign="top"|''η'', ''T'', ''η'' ′, ''T'' ′ (m<sup>2</sup>s<sup>-2</sup>) | |||
|align="center"|''Y''<sub>N<sub>2</sub></sub>, RMS(''Y''<sub>N<sub>2</sub></sub>) | |||
''Y''<sub>O<sub>2</sub></sub>, RMS(''Y''<sub>O<sub>2</sub></sub>) | |||
''Y''<sub>H<sub>2</sub>O</sub>, RMS(''Y''<sub>H<sub>2</sub>O</sub> ) | |||
''Y''<sub>H<sub>2</sub></sub>, RMS(''Y''<sub>H<sub>2</sub></sub>) | |||
''Y''<sub>CH<sub>4</sub></sub>, RMS(''Y''<sub>CH<sub>4</sub></sub>) | |||
''Y''<sub>CO</sub>, RMS(''Y''<sub>CO</sub> ) | |||
''Y''<sub>CO<sub>2</sub></sub>, RMS(''Y''<sub>CO<sub>2</sub></sub>) | |||
''Y''<sub>OH</sub>, RMS(''Y''<sub>OH</sub> ) | |||
''Y''<sub>NO</sub>, RMS(''Y''<sub>NO</sub> ) | |||
|} | |} | ||
==TEST CASE EXP1== | ==TEST CASE EXP1== | ||
Line 69: | Line 130: | ||
|[[Image:AC2-09_fig3b.gif|350px]] | |[[Image:AC2-09_fig3b.gif|350px]] | ||
|- | |- | ||
|colspan="3" align="center"|Fig. 3 | |colspan="3" align="center"|'''Fig. 3:''' Mean and RMS inlet profiles of the axial velocity. | ||
|} | |} | ||
Line 83: | Line 144: | ||
===Measured Data=== | ===Measured Data=== | ||
The velocity data (in ASCII format) can be obtained by contacting Prof. Andreas Dreizler, | |||
TU Darmstadt (dreizler@csi.tu-darmstadt.de). | |||
The scalar data are available at http://www.sandia.gov/TNF/DataArch/FlameD.html | |||
===References=== | ===References=== | ||
<references/> | <references/> | ||
Line 89: | Line 154: | ||
---- | ---- | ||
{{ACContribs | {{ACContribs | ||
|authors=Andrzej Boguslawski | |authors=Andrzej Boguslawski, Artur Tyliszczak | ||
|organisation= | |organisation=Częstochowa University of Technology | ||
}} | }} | ||
{{ACHeader | {{ACHeader | ||
Line 98: | Line 163: | ||
© copyright ERCOFTAC | © copyright ERCOFTAC 2011 |
Latest revision as of 15:42, 11 February 2017
SANDIA Flame D
Application Challenge AC2-09 © copyright ERCOFTAC 2024
Overview of Tests
The velocity measurements were performed with two-component fiber-optic laser Doppler anemometer (Dantec). All the details of the flow field measuring techniques applied in Sandia Flame D experiment are explained in[1]. Measured scalars for Sandia D Flame include temperature, mixture fraction, N2, O2, H2O, H2, CH4, CO, CO2, OH and NO. Experimental methods and measurement uncertainties are outlined in[1] Spontaneous Raman scattering of the beams from two Nd:YAG lasers (532 nm) was used to measure concentrations of the major species. The Rayleigh scattering signal was converted to temperature using a species-weighted scattering cross section, based on the Raman measurements. Linear laser-induced fluorescence (LIF) was used to measure OH and NO, and the fluorescence signals were corrected on a shot-to-shot basis for variations in Boltzmann fraction and collisional quenching rate. The concentration of CO was measured by Raman scattering and by two-photon laser-induced fluorescence (TPLIF).
Name | GNDPs | PDPs (Problem Definition Parameters) | MPs (Measured Parameters) | ||
---|---|---|---|---|---|
Re | Fuel jet composition | Pilot flame composition | Detailed data | DOAPs | |
EXP1 | 22400 | 25% of methane (CH4) and 75% of air | C2H2, H2, air, CO2 and N2 |
|
Axial profiles
Tmax , z/D (Tmax ) Lconst(η , YCH4 , YO2) Lconst(YH2O , YCO2) YH2, max , z/D (YH2, max ) YCO, max , z/D (YCO, max ) RMSmax z/D (RMSmax ) Radial profiles x/D = 15, 30, 45 Fmax , Umax r½(η) , r½(U ) |
MP1 | MP2 | MP3 | DOAPs or other miscellaneous data |
---|---|---|---|
U, V, u ′, v ′ (ms-1) | η, T, η ′, T ′ (m2s-2) | YN2, RMS(YN2)
YO2, RMS(YO2) YH2O, RMS(YH2O ) YH2, RMS(YH2) YCH4, RMS(YCH4) YCO, RMS(YCO ) YCO2, RMS(YCO2) YOH, RMS(YOH ) YNO, RMS(YNO ) |
TEST CASE EXP1
Description of Experiment
The Application Challenge includes just one test case, Sandia Flame D with defined Reynolds number of the fuel jet and the fuel and pilot flame compositions as given in Table EXP-A.
Boundary Data
The inlet mean and fluctuating velocity at the distance x/D=1 from the burner are shown in Fig.3. The inlet parabolic profile had a maximum at the centre of the fuel nozzle of Umax = 62 m/s. The pilot flame bulk velocity Upilot = 11.4 m/s and the coflow velocity Ucfl = 0.9 m/s.
Fig. 3: Mean and RMS inlet profiles of the axial velocity. |
Measurement Errors
The flow field measurement statistical errors are estimated in[1] as below 5% for the mean velocities and within 10% for fluctuating components. The scalar measurement errors are estimated and analyzed in[2]. The relative uncertainty (not including statistical noise or potential effects of spatial averaging) is estimated to be within 2% for the Raman measurements, 5% for OH, 5% for CO, and 10% for NO.
Measured Data
The velocity data (in ASCII format) can be obtained by contacting Prof. Andreas Dreizler, TU Darmstadt (dreizler@csi.tu-darmstadt.de).
The scalar data are available at http://www.sandia.gov/TNF/DataArch/FlameD.html
References
Contributed by: Andrzej Boguslawski, Artur Tyliszczak — Częstochowa University of Technology
© copyright ERCOFTAC 2011