UFR 4-20 Test Case: Difference between revisions

From KBwiki
Jump to navigation Jump to search
Line 91: Line 91:
|[[Image:UFR4-20_Fig4.png|650px]]
|[[Image:UFR4-20_Fig4.png|650px]]
|-
|-
|align="left"|'''Figure 4:''' PIV measurement setup; the laser head is positioned above the test section using a translation stage. ROI1 indicates the region of interest (0.3 x 0.3 m<sup>2</sup>) for the first measurement set, ROI2 indicates the smaller region of interest of 0.18 x 0.12 m<sup>2</sup> (W x H) for the second set. Figure from [[UFR_4-20_References#42|van&nbsp;Hooff&nbsp;''et&nbsp;al.''&nbsp;(2012a)]].
|align="left"|'''Fig 4:''' Figure 4: Instantaneous images of the flow pattern in vertical centerplane of the enclosure. (a) Re&nbsp;&asymp;&nbsp;1,000. (b) Re&nbsp;&asymp;&nbsp;2,500. Figure modified from [[UFR_4-20_References#42|van&nbsp;Hooff&nbsp;''et&nbsp;al.''&nbsp;(2012a)]].
|}
|}
Fig. 4: Instantaneous images of the flow pattern in vertical centerplane of the enclosure. (a) Re ? 1,000. (b) Re ? 2,500. Figure modified from van Hooff et al. (2012a).


==CFD methods==
==CFD methods==

Revision as of 14:01, 20 February 2018

Mixing ventilation flow in an enclosure driven by a transitional wall jet

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Confined Flows

Underlying Flow Regime 4-20

Test Case Studies

Brief description of the study test case

The geometry of the reduced-scale enclosure studied in this UFR was cubical with edge L = 0.3 m. A linear ventilation inlet slot was present at the top with a height hinlet/L = 0.1 and a width winlet/L = 1, and a linear ventilation outlet was located at the bottom of the opposing wall (houtlet/L = 0.0167) (see Fig. 1). The walls had a thickness d (d/L = 8/30). The slot Reynolds number was defined as , with the bulk inlet velocity, the slot height (see Fig. 1a) and the kinematic viscosity at room temperature (≈ 20°C). For this study two Re-values were included: Re = 1,000 and Re = 2,500, which resulted in mixing ventilation driven by a transitional wall jet, including the typical large recirculation cell, jet detachment from the top surface and Kelvin-Helmholtz-type instabilities in the shear layer of the wall jet (van Hooff et al. 2012a). No temperature differences were included (isothermal case); i.e. no buoyancy effects were present.

Test case experiments

Experimental setup

A reduced-scale water-filled model was built to perform flow visualizations and PIV measurements of forced mixing ventilation (Fig. 2). The experimental setup consisted of: (1) a water column to drive the flow by hydrostatic pressure; (2) a flow conditioning section; (3) a cubic test section with dimensions 0.3 x 0.3 x 0.3 m3 (L3); and (4) an overflow. The conditioning section in front of the inlet consisted of one honeycomb, three screens and a contraction. The diameter of the hexagonal honeycombs (type ECM 4.8/77) was dh = 4.8 mm and the length to diameter ratio was 10.4 (Lh = 50 mm). Three screens were included downstream of the honeycombs to reduce the longitudinal components of turbulence and the mean-velocity gradients, with porosities of 72%, 65% and 60%, and thread diameters of 1.6 mm, 1.0 mm and 0.4 mm, respectively (porosity reduces in flow direction). Finally, a contraction further reduced the velocity gradients and turbulence intensities and accelerated the flow. The shape of the contraction was based on the fifth-order polynomial of Bell and Mehta (1988), which has been optimized by Brassard and Ferchichi (2005) by adding the coefficient α:



with ξ the normalized length of the contraction, hg the normalized height of the contraction, Lc the length of the contraction and Hi and He the heights of the contraction inlet and the contraction outlet, respectively. The length Lc of the contraction was 0.09 m, He is 0.03 m, Hi is 0.09 m. Defraeye (2006) found an optimum value for α of 0.5, which was used for the contraction in this setup as well.

The test section was constructed from glass plates with a thickness of 8 mm (Fig. 1a). The maximum local velocity UM (Fig. 1b) was used to make the velocities non-dimensional (U/UM). Note that UM was defined as the local maximum time-averaged x-velocity, and thus varies with both x/L and Re. It was chosen to use UM since the exact inlet velocity was not measured and thus not known and could therefore not be used to make the velocities inside the enclosure dimensionless.

UFR4-20 Fig2.png
Figure 2: Reduced-scale experimental setup: (1) water column; (2) flow conditioning section in front of the inlet, (3) test section, (4) overflow, and valves that are placed in a block after the overflow. Dimensions in mm. Figure modified from van Hooff et al. (2013).

PIV setup

Measurements were performed in the vertical center plane of the reduced-scale enclosure presented in the previous sections using PIV. More detailed information on the experimental setup can be found in van Hooff et al. (2012a, 2012b).

Measurements were performed using a 2D PIV system, measuring the horizontal (x-direction) and vertical (y-direction) velocity components (u,v). The PIV system consisted of a Nd:Yag (532 nm) double-cavity laser (2 x 200 mJ, repetition rate < 10 Hz) used to illuminate the field of view, and a CCD (Charge Coupled Device) camera (1376 x 1040 pixel resolution, 10 frames/s) for image acquisition. The laser was positioned above the cubic test section to create a laser sheet in the vertical center plane of the cube (z/L = 0.5); the camera was positioned perpendicular to the illuminated plane. Hollow glass micro spheres (3M; type K1) with diameters in the range of 30 – 115 μm were used to provide seeding. Two sets of PIV measurements were performed, both in the vertical center plane (z/L = 0.5). The first set focused on the entire vertical cross-section of the enclosure (0.3 x 0.3 m2 (= ROI1)) (Fig. 3), while a second set focused on a smaller area of 0.18 x 0.12 m2 (W x H) to obtain a higher measurement resolution near the inlet (= ROI2). The measuring frequency was 2 Hz and each measurement set consisted of 360 uncorrelated samples resulting in an averaging time of 180 seconds. Systematic errors were present for each sample and consisted of a range of errors that are associated with the PIV measurement technique and methodology (e.g. Prasad (2000)) and were minimized using the best practice guidelines of Keane and Adrian (1990) and Prasad (2000). The repeatability (or random) error is a statistical error, of which the uncertainty was assessed using the central limit theorem (e.g. Coleman and Steel 1999). The uncertainty of the measurement results was found to be around 2-4% in the largest part of the test section, whereas it was slightly higher in the shear layer and boundary layer areas due to the locally higher turbulence levels (van Hooff et al. (2012a)).


UFR4-20 Fig3.png
Figure 3: PIV measurement setup; the laser head is positioned above the test section using a translation stage. ROI1 indicates the region of interest (0.3 x 0.3 m2) for the first measurement set, ROI2 indicates the smaller region of interest of 0.18 x 0.12 m2 (W x H) for the second set. Figure from van Hooff et al. (2012a).

Results: transitional flow

It was assured that transitional flow was present by performing flow visualizations using fluorescent dye injected in the center of the inlet opening. Figure 4 shows an example of such visualization for slot Re numbers of Re ≈ 1,000 and Re ≈ 2,500, in which it is shown that the jet was laminar first and became transitional downstream, when shear layer instabilities started and vortical structures started to develop in the shear layer. The onset to transitional flow occurred further upstream with increasing Reynolds number. Figure 4 also shows that jet detachment from the top surface occurs further downstream with increasing Re, resulting in a slightly different overall flow pattern.

UFR4-20 Fig4.png
Fig 4: Figure 4: Instantaneous images of the flow pattern in vertical centerplane of the enclosure. (a) Re ≈ 1,000. (b) Re ≈ 2,500. Figure modified from van Hooff et al. (2012a).


Fig. 4: Instantaneous images of the flow pattern in vertical centerplane of the enclosure. (a) Re ? 1,000. (b) Re ? 2,500. Figure modified from van Hooff et al. (2012a).

CFD methods

Computational complexity and grid

Boundary conditions

Solver settings




Contributed by: T. van Hooff(*), B. Blocken(*), G.J.F. van Heijst(**) — (*)Dept. of Civil Engineering, KU Leuven, Belgium and Dept. of the Built Environment, Eindhoven University of Technology, the Netherlands.
(**)Dept. of Applied Physics, Eindhoven University of Technology, the Netherlands

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024