UFR 3-36 References: Difference between revisions

From KBwiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(18 intermediate revisions by 3 users not shown)
Line 1: Line 1:
=Lib:Create_Ercoftac_Article_Form=
=HiFi-TURB-DLR rounded step=
{{UFRHeaderLib
{{UFRHeader
|area=3
|area=3
|number=36
|number=36
Line 6: Line 6:
__NOTOC__
__NOTOC__


====
== Semi-confined flows ==  
===Underlying Flow Regime 3-36===
===Underlying Flow Regime 3-36===
= References =
= References =
Line 29: Line 29:
# <div id="19">'''Schlatter, P. and &Ouml;rl&uuml;, R.''' Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects,''Journal of Fluid Mechanics,''&nbsp;710:5&ndash;34,&nbsp;2012</div>
# <div id="19">'''Schlatter, P. and &Ouml;rl&uuml;, R.''' Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects,''Journal of Fluid Mechanics,''&nbsp;710:5&ndash;34,&nbsp;2012</div>
# <div id="20">'''F. Bassi, L. Botti, A. Colombo, A. Ghidoni and F. Massa''' Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows, ''Computers & Fluids,''&nbsp;118:305&ndash;320,&nbsp;2015</div>
# <div id="20">'''F. Bassi, L. Botti, A. Colombo, A. Ghidoni and F. Massa''' Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows, ''Computers & Fluids,''&nbsp;118:305&ndash;320,&nbsp;2015</div>
 
# <div id="21">'''F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini''' A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, ''Turbomachinery - Fluid Dynamics and Thermodynamics," 670 European Conference,''&nbsp;2:99&ndash;108,&nbsp;1997</div>
# <div id="21">'''S. Radhakrishnan and U. Piomelli and A. Keating''' Wall-modeled large-eddy simulations of flows with curvature and mild separation, ''Journal of Fluids Engineering,''&nbsp;130:101203,&nbsp;2008</div>
# <div id="22">'''G. Di Marzo''' Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques, ''MSc Mathematics Thesis, Faculty of Science, University of Geneva, ''&nbsp;1993</div>
 
# <div id="23">'''G. Noventa, F. Massa, S. Rebay, F. Bassi and A. Ghidoni''' Robustness and efficiency of an implicit time-adaptive discontinuous Galerkin solver for unsteady flows, ''Computers & Fluids, ''&nbsp;204&nbsp;2020</div>
# <div id="22">'''S. Radhakrishnan and U. Piomelli and A. Keating and A. S. Lopes''' Reynolds-averaged and large-eddy simulations of turbulent non-equilibrium flows, ''Journal of Turbulence,''&nbsp;7(63):1&ndash;30,&nbsp;2006</div>
# <div id="24">'''D. Warnack and H. H. Fernholz ''' The effects of a favourable pressure gradient and of the reynolds number on an incompressible axisymmetric turbulent boundary layer. part1. the turbulent boundary layer.,'' Journal of Fluid Mechanics'',&nbsp;359:329&ndash;356,,&nbsp;1998</div>
 
# <div id="25">'''J. Kuehnen, D. Scarselli, M. Schaner and B. Hof''' Relaminarization by steady modification of the streamwise velocity profile in a pipe, ''Flow Turbulence & Combustion, ''&nbsp;100:919&ndash;943,&nbsp;2018</div>  
# <div id="23">'''Rhie, CM and Chow, WL''' Numerical study of the turbulent flow past an airfoil with trailing edge separation, ''AIAA journal,''&nbsp;21(11):1525&ndash;1532,&nbsp;1983</div>
# <div id="26">'''R. Narashima and R. Ranjan''' An Assessment of the Two-Layer Quasi-Laminar Theory of Relaminarization Through Recent High-Re Accelerated Turbulent Boundary Layer Experiment, ''Journal of Fluids Engineering,''&nbsp;139(11):111205&ndash;111215,&nbsp;2017</div>  
 
# <div id="27">'''S. Lardeau''' UFR 3-31: Flow over curved backward-facing step, ''Available: https://www.kbwiki.ercoftac.org/w/index.php/Abstr:UFR_3-31. [Accessed 25 July 2022],''&nbsp;2012</div>
# <div id="24">'''Rodi, W.''' Experience with two-layer models combining the k-epsilon model with a one-equation model near the wall, In&nbsp;''29th AIAA Aerospace Sciences Meeting'',&nbsp;Volume&nbsp;1,&nbsp;1991</div>
# <div id="28">'''F. Bassi, A. Crivellini, S. Rebay and M. Savini''' Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k-ω turbulence model equations, ''Computers and Fluids'', 34:507-540, &nbsp;2005</div>
 
# <div id="29">'''F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro and P. Tesini''' On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, ''Journal of Computational Physics'', 231:45-65, &nbsp;2012</div>
# <div id="25">'''Schlatter, P. and &Ouml;rl&uuml;, R.''' Assessment of direct numerical simulation data of turbulent boundary layers, ''Journal of Fluid Mechanics,''&nbsp;659:116&ndash;126,&nbsp;2010</div>  
# <div id="30">'''F. Bassi, L. Botti, A. Colombo and S. Rebay''' Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations, ''Computers and Fluids'', 61:77-85, &nbsp;2012</div>
 
# <div id="31">'''C.T. Kelley and D.E. Keyes ''' Convergence Analysis of Pseudo-Transient Continuation, ''SIAM Journal on Numerical Analysis, ''&nbsp;35(2):508&ndash;523,&nbsp;1998 </div>
# <div id="26">'''Shih, T.H. and Liou, W.W. and Shabbir, A. and Yang, Z. and Zhu, J.''' A new k-[epsilon] eddy viscosity model for high reynolds number turbulent flows, ''Computers &amp; Fluids,''&nbsp;24(3):227&ndash;238,&nbsp;1995</div>  
# <div id="32">'''D.C. Wilcox '''Formulation of the k-<math>\omega</math> turbulence model revisited, ''AIAA Journal'', 46:2823-2838, &nbsp;2008</div> </div>
 
# <div id="27">'''S. Song and J. K. Eaton''' Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery, ''Experiments in Fluids,''&nbsp;36(2):246&ndash;258,&nbsp;2004</div>
 
# <div id="28">'''C. Wang and Y. J. Jang and M. A. Leschziner''' Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures, ''International Journal of Heat and Fluid Flow,''&nbsp;25:499&ndash;512,&nbsp;2004</div>
 
# <div id="29">'''B. Wasistho and K.D. Squires''' Prediction of turbulent separation over a backward-facing smooth ramp, ''Journal of Turbulence,''&nbsp;6:1&ndash;26,&nbsp;2005</div>
 
# <div id="30">'''Wilcox, D.C., American Institute of Aeronautics and Astronautics''' ''Turbulence modeling for CFD,''&nbsp;volume&nbsp;2 DCW industries La Canada, CA</div>
 
# <div id="31">'''Zhang, S. and Zhong, S.''' An experimental investigation of turbulent flow  separation control by an array of synthetic jets, ''AIAA Paper,''&nbsp;2010-4582,&nbsp;2010</div>  
 
<br/>
<br/>
----
----
Line 58: Line 47:
|organisation=Deutsches Luft-und Raumfahrt Zentrum (DLR)
|organisation=Deutsches Luft-und Raumfahrt Zentrum (DLR)
}}
}}
{{UFRHeaderLib
{{UFRHeader
|area=3
|area=3
|number=36
|number=36

Latest revision as of 15:56, 17 February 2023

HiFi-TURB-DLR rounded step

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


Semi-confined flows

Underlying Flow Regime 3-36

References

  1. D. Greenblatt, K. B. Paschal, C.-. S. Yao, J. Harris, N. W. Schaeffler and A. E. Washburn Experimental Investigation of Separation Control Part 1: Baseline and Steady Suction. AIAA Journal, 44(12):2820–2830, 2006
  2. D. Greenblatt, K. B. Paschal, C.-. S. Yao and J. Harris Experimental Investigation of Separation Control Part 2: Zero Mass-Flux Oscillatory Blowing. AIAA Journal, 44(12):2831–2845, 2006
  3. S. Zhang and S. Zhong Turbulent Flow Separation over a Two-Dimensional Ramp Using Synthetic Jets. AIAA Journal, 49(12):2637–2649, 2011
  4. Y. Bentaleb, S. Lardeau and M. A. Leschziner Large-eddy simulation of turbulent boundary layer separation from a rounded step, Journal of Turbulence, 13(4):1–28, 2012
  5. C. L. Rumsey LES: 2-D curved backward-facing step, Available: https://turbmodels.larc.nasa.gov/Other_LES_Data/curvedstep.html. 2021
  6. K. J. Disotell and C. L. Rumsey Development of an Axisymmetric Afterbody Test Case for Turbulent Flow Separation Validation, NASA/TM-2017-219680, Langley Research Center, 2017
  7. K. J. Disotell and C. Rumsey Modern CFD Validation of Turbulent Flow Separation on Axisymmetric Afterbodies, NASA/Umich Symposium on Advances in Turbulence Modeling, 2017
  8. D. Schwamborn, T. Gerhold and R. Kessler The DLR TAU-Code: Recent Applications in Research and Industry, ECCOMAS CFD 2006 Conference, Netherlands, 2006
  9. S. R. Allmaras, F. T. Johnson and P. R. Spalart Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model, ICCFD7-1902, 7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii, 2012
  10. M. L. Shur, M. K. Strelets, A. K. Travin and P. R. Spalart Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction, AIAA Journal,38(5):784–792, 2000
  11. P. R. Spalart Strategies for Turbulence Modelling and Simulation, International Journal of Heat and Fluid Flow,21:252–263, 2000
  12. P. R. Spalart private communication,  2020
  13. P. R. Spalart and A. V. Garbaruk, A correction to the Spalart-Allmaras Turbulence Model, Providing More Accurate Skin Friction, AIAA journal, 2020
  14. F. Menter, M. Kuntz and R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model,Turbulence, Heat and Mass Transfer 4, 625–632, 2003
  15. P. Smirnov and F. R. Menter Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term, ASME Journal of Turbomachinery, 131;2009
  16. B. Eisfeld, C. Rumsey and V. Togiti Verification and Validation of a Second-Moment-Closure Model, AIAA Journal,54(5):1524–1541;2016
  17. B. Eisfeld and C. Rumsey Length-Scale Correction for Reynolds Stress Modeling, AIAA Aviation Forum, 2019
  18. S. Hosseini, R. Vinuesa, P. Schlatter, A. Hanifia and D. Henningson Direct numerical simulation of the flow around a wing section at moderate Reynolds number, International Journal of Heat and Fluid Flow, 61:117–128, 2016
  19. Schlatter, P. and Örlü, R. Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects,Journal of Fluid Mechanics, 710:5–34, 2012
  20. F. Bassi, L. Botti, A. Colombo, A. Ghidoni and F. Massa Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows, Computers & Fluids, 118:305–320, 2015
  21. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Turbomachinery - Fluid Dynamics and Thermodynamics," 670 European Conference, 2:99–108, 1997
  22. G. Di Marzo Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques, MSc Mathematics Thesis, Faculty of Science, University of Geneva,  1993
  23. G. Noventa, F. Massa, S. Rebay, F. Bassi and A. Ghidoni Robustness and efficiency of an implicit time-adaptive discontinuous Galerkin solver for unsteady flows, Computers & Fluids,  204 2020
  24. D. Warnack and H. H. Fernholz The effects of a favourable pressure gradient and of the reynolds number on an incompressible axisymmetric turbulent boundary layer. part1. the turbulent boundary layer., Journal of Fluid Mechanics, 359:329–356,, 1998
  25. J. Kuehnen, D. Scarselli, M. Schaner and B. Hof Relaminarization by steady modification of the streamwise velocity profile in a pipe, Flow Turbulence & Combustion,  100:919–943, 2018
  26. R. Narashima and R. Ranjan An Assessment of the Two-Layer Quasi-Laminar Theory of Relaminarization Through Recent High-Re Accelerated Turbulent Boundary Layer Experiment, Journal of Fluids Engineering, 139(11):111205–111215, 2017
  27. S. Lardeau UFR 3-31: Flow over curved backward-facing step, Available: https://www.kbwiki.ercoftac.org/w/index.php/Abstr:UFR_3-31. [Accessed 25 July 2022], 2012
  28. F. Bassi, A. Crivellini, S. Rebay and M. Savini Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k-ω turbulence model equations, Computers and Fluids, 34:507-540,  2005
  29. F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro and P. Tesini On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, Journal of Computational Physics, 231:45-65,  2012
  30. F. Bassi, L. Botti, A. Colombo and S. Rebay Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations, Computers and Fluids, 61:77-85,  2012
  31. C.T. Kelley and D.E. Keyes Convergence Analysis of Pseudo-Transient Continuation, SIAM Journal on Numerical Analysis,  35(2):508–523, 1998
  32. D.C. Wilcox Formulation of the k- turbulence model revisited, AIAA Journal, 46:2823-2838,  2008




Contributed by: Erij Alaya and Cornelia Grabe — Deutsches Luft-und Raumfahrt Zentrum (DLR)

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024