UFR 2-13 References

From KBwiki
Jump to navigation Jump to search

Fluid-structure interaction in turbulent flow past cylinder/plate configuration I (First swiveling mode)

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Flows Around Bodies

Underlying Flow Regime 2-13

References

  • Adrian, R. J., 1991. Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics 23 (1), 261–304.
  • Bischoff, M., 1999. Theorie und Numerik einer dreidimensionalen Schalenformulierung. Ph.D. thesis, Institut für Baustatik, Universität Stuttgart, Germany.
  • Bischoff, M., Ramm, E., 1997. Shear deformable shell elements for large strains and rotations. Int. Journal for Numerical Methods in Engineering 40 (23), 4427–4449.
  • Bischoff, M., Ramm, E., 2000. On the physical significance of higher-order kinematic and static variables in a three-dimensional shell formulation. Int. Journal of Solids and Structures 37 (46), 6933–6960.
  • Bischoff, M., Wall, W. A., Bletzinger, K.-U., Ramm, E., 2004. Models and finite elements for thin-walled structures. In: Stein, E., De Borst, R., Hughes, T. J. R. (Eds.), Encyclopedia of Computational Mechanics. Vol. 2. John Wiley & Sons Ltd, Chichester, pp. 59–138.
  • Bletzinger, K.-U., Wüchner, R., Daoud, F., Camprubi, N., 2005. Computational methods for form finding and optimization of shells and membranes. Computer Methods in Applied Mechanics and Engineering 194 (30), 3438–3452.
  • Bletzinger, K.-U., Wüchner, R., Kupzok, A., 2006. Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz, H.-J., Sch¨afer, M. (Eds.), Fluid-Structure Interaction. Vol. 53 of Lecture Notes in Computational Science and Engineering, LNCSE. Springer, Heidelberg, pp. 336–355.
  • Boyer, F., De Nayer, G., Leroyer, A., Visonneau, M., 2011. Geometrically exact Kirchhoff beam theory: Application to cable dynamics. Journal of Computational and Nonlinear Dynamics 6, 041004.
  • Breuer, M., 2002. Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Universität Erlangen–Nürnberg, Berichte aus der Strömungstechnik. Shaker Verlag, Aachen, Germany.
  • Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., W¨uchner, R., 2012. Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. Journal of Fluids and Structures 29, 107–130.
  • Büchter, N., Ramm, E., 1992. Shell theory versus degeneration – A comparison in large Rotation finite element analysis. Int. Journal for Numerical Methods in Engineering 34 (1), 39–59.
  • Büchter, N., Ramm, E., Roehl, D., 1994. Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. Journal for Numerical Methods in Engineering 37 (15), 2551–2568.
  • Bungartz, H.-J., Mehl, M., Schäfer, M. (Eds.), 2010. Fluid Structure Interaction II: Modelling, Simulation, Optimization. Vol. 73 of Lecture Notes in Computational Science and Engineering, LNCSE. Springer, Heidelberg.
  • Cantwell, B., Coles, D., 1983. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of Fluid Mechanics 136 (1), 321–374.
  • Chaplin, J. R., Bearman, P. W., Cheng, Y., Fontaine, E., Graham, J. M. R., Herfjord, K., Huera Huarte, F. J., Isherwood, M., Lambrakos, K., Larsen, C. M., Menegheni, J. R., Moe, G., Pattenden, R. J., Triantafyllou, M. S., Willden, R. H. J., 2005a. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. Journal of Fluids and Structures 21, 25–40.
  • Chaplin, J. R., Bearman, P. W., Huera Huarte, F. J., Pattenden, R. J., 2005b. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluids and Structures 21, 3–24. Chung, J., Hulbert, G. M., 1993. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-® method. Journal of Applied Mechanics 60, 371–375.
  • Clough, R. W., Penzien, J., 1993. Dynamics of Structures. McGraw-Hill, New York. Demirdzic, I., Peric, M., 1988. Space conservation law in finite-volume calculations of fluid flow. Int. Journal for Numerical Methods in Fluids 8 (9), 1037–1050.
  • Demirdzic, I., Peric, M., 1990. Finite-volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries. Int. Journal for Numerical Methods in Fluids 10 (7), 771–790.
  • De Nayer, G., Kalmbach, A., Breuer, M., Sicklinger, S., Wüchner, R., 2014. Flow past a cylinder with a flexible splitter plate: a complementary experimental-numerical investigation and a new FSI test case (FSI-PfS-1a). Int. Journal of Computers and Fluids 99, 18–43.
  • Dieringer, F., Wüchner, R., Bletzinger, K.-U., 2012. Practical advances in numerical form finding and cutting pattern generation for membrane structures. Journal of the International Association for Shell and Spatial Structures 53 (3), 147–156.
  • Durst, F., Schäfer, M., 1996. A parallel block-structured multigrid method for the prediction of incompressible flows. Int. Journal for Numerical Methods in Fluids 22 (6), 549–565.
  • Durst, F., Schäfer, M., Wechsler, K., 1996. Efficient simulation of incompressible viscous flows on parallel computers. In: Hirschel, E. H. (Ed.), Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics. Vol. 52(1). Vieweg, pp. 87–101.
  • Farhat, C., Lesoinne, M., LeTallec, P., 1998. Load and motion transfer algorithms for fluidstructure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 157, 95–114.
  • Fischer, M., Firl, M., Masching, H., Bletzinger, K.-U., 2010. Optimization of non-linear structures based on object-oriented parallel programming. In: Topping, B. H. V., Adam, J. M.,
  • Pallares, F. J., Bru, R., Romero, M. L. (Eds.), Seventh Int. Conf. Engineering Computational Technology, ECT2010. Civil–Comp Press, Stirlingshire, UK, p. 67.
  • Formaggia, L., Gerbeau, J. F., Nobile, F., Quarteroni, A., 2001. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics and Engineering 191 (6-7), 561–582.
  • Förster, C., Wall, W. A., Ramm, E., 2007. Artificial added mass instabilities in sequential staggered coupling of non-linear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering 196 (7), 1278–1293.
  • Fujarra, A., Pesce, C., Flemming, F., Williamson, C., 2001. Vortex-induced vibration of a flexible cantilever. Journal of Fluids and Structures 15 (3-4), 651–658.
  • Gallinger, T., Kupzok, A., Israel, U., Bletzinger, K.-U., Wüchner, R., 2009. A computational environment for membrane-wind interaction. In: Hartmann, S., Mesiter, A., Schäfer, M., Turek, S. (Eds.), Int. Workshop on Fluid-Structure Interaction: Theory, Numerics and Applications. Kassel University Press GmbH, pp. 283–294.
  • Germano, M., Piomelli, U., Moin, P., Cabot, W. H., 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A 3, 1760–1765.
  • Giacobbi, D. B., Rinaldi, S., Semler, C., Paidoussis, M. P., 2012. The dynamics of a cantilevered pipe aspirating fluid studied by experimental, numerical and analytical methods. Journal of Fluids and Structures 30, 73–96.
  • Glück, M., Breuer, M., Durst, F., Halfmann, A., Rank, E., 2001. Computation of fluid-structure interaction on lightweight structures. Journal of Wind Engineering and Industrial Aerodynamics 89 (14-15), 1351–1368.
  • Gomes, J. P., 2011. Fluid-structure interaction-induced oscillation of flexible structures in uniform flows. Ph.D. thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, Germany.
  • Gomes, J. P., Lienhart, H., 2006. Experimental study on a fluid-structure interaction reference test case. In: Bungartz, H.-J., Schäfer, M. (Eds.), Fluid-Structure Interaction – Modelling, Simulation, Optimization. Vol. 53 of Lecture Notes in Computational Science and Engineering, LNCSE. Springer, Heidelberg, pp. 356–370.
  • Gomes, J. P., Lienhart, H., 2010. Experimental benchmark: Self-excited fluid-structure interaction test cases. In: Bungartz, H.-J., Mehl, M., Schäfer, M. (Eds.), Fluid-Structure Interaction II – Modelling, Simulation, Optimization. Vol. 73 of Lecture Notes in Computational Science and Engineering, LNCSE. Springer, Heidelberg, pp. 383–411.
  • Gomes, J. P., Lienhart, H., 2013. Fluid-structure interaction-induced oscillation of flexible structures in laminar and turbulent flows. Journal of Fluid Mechanics 715, 537–572.
  • Gomes, J. P., Münsch, M., Breuer, M., Lienhart, H., 2010. Flow-induced oscillation of a flat plate – a fluid-structure interaction study using experiment and LES. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, H., Nitsche, W., Schröder, W. (Eds.), New Results in Numerical and Experimental Fluid Mechanics VII, Contr. to the 16. STAB/DGLR Symposium, Nov. 3–5, 2008, Aachen, Germany. Vol. 112 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer, Heidelberg, pp. 347–354.
  • Gomes, J. P., Yigit, S., Lienhart, H., Schäfer, M., 2011. Experimental and numerical study on a laminar fluid-structure interaction reference test case. Journal of Fluids and Structures 27 (1), 43–61.
  • Hojjat, M., Stavropoulou, E., Gallinger, T., Israel, U., Wüchner, R., Bletzinger, K.-U., 2010. Fluid-structure interaction in the context of shape optimization and computational wind engineering. In: Bungartz, H.-J., Mehl, M., Schäfer, M. (Eds.), Fluid-Structure Interaction II – Modelling, Simulation, Optimization. Vol. 73 of Lecture Notes in Computational Science and Engineering, LNCSE. Springer, Heidelberg, pp. 351–381.
  • Holzapfel, G. A., 2000. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons Ltd.
  • Hübner, B., Walhorn, E., Dinkler, D., 2004. A monolithic approach to fluid-structure interaction using space-time finite elements. Computer Methods in Applied Mechanics and Engineering 193 (23-26), 2087–2104.
  • Hughes, T., Tezduyar, T., 1981. Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. Journal of Applied Mechanics 48, 587–596.
  • Kalmbach, A., Breuer, M., 2013. Experimental PIV/V3V measurements of Vortex-Induced Fluid-structure Interaction in turbulent flow - A new Benchmark FSI-PfS-2a. Journal of Fluids and Structures 42, 369-387.
  • Krätzig, W., Meskouris, K., Link, M., 1996. Der Ingenieurbau, Baustatik, Baudynamik. Ernst & Sohn Verlag, Berlin, Ch. Baudynamik und Systemidentifikation, pp. 365–518.
  • Lesoinne, M., Farhat, C., 1996. Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Computer Methods in Applied Mechanics and Engineering 134 (1-2), 71–90.
  • Mindlin, R., 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics 18, 31–38.
  • Mok, D. P., 2001. Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. Ph.D. thesis, Institut für Baustatik, Universität Stuttgart, Germany.
  • Naudascher, E., Rockwell, D., 1994. Flow-induced Vibrations: An Engineering Guide. AA Balkema, Rotterdam, Holland.
  • Nobile, F., 2001. Numerical approximation of fluid-structure interaction problems with application to haemodynamics. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.
  • Paidoussis, M. P., 1998. Fluid-Structure Interactions: Slender Structures and Axial Flow. Vol. 1. Academic Press.
  • Paidoussis, M. P., 2003. Fluid-Structure Interactions: Slender Structures and Axial Flow. Vol. 2. Academic Press.
  • Park, K. C., Stanley, G. M., 1986. A curved C0-shell element based on assumed naturalcoordinate strains. Journal of Applied Mechanics 53, 278–290.
  • Petersen, C., 2000. Dynamik der Baukonstruktionen. Vieweg.
  • Reissner, E., 1945. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics 12 (2), 69–77.
  • Reynolds, W. C., Hussain, A., 1972. The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. Journal of Fluid Mechanics 54 (2), 263–288.
  • Rhie, C. M., Chow, W. L., 1983. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 21 (11), 1525–1532.
  • Smagorinsky, J., 1963. General circulation experiments with the primitive equations I: The basic experiment. Monthly Weather Review 91 (3), 99–165.
  • Stone, H. L., 1968. Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM Journal on Numerical Analysis 5 (3), 530–558.
  • Taylor, R. L., 2002. FEAP-a Finite Element Analysis Program. Version 7.4 User Manual. University of California at Berkeley. http://www.ce.berkeley.edu/projects/feap/.
  • Thompson, J. F., Warsi, Z. U. A., Wayne Mastin, C. W., 1985. Numerical Grid Generation: Foundations and Applications. Vol. 45. North-Holland.
  • Turek, S., Hron, J., 2006. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz, H.-J., Schäfer, M. (Eds.), Fluid-Structure Interaction. Vol. 53 of Lecture Notes in Computational Science and Engineering, LNCSE. Springer, Heidelberg, pp. 371–385.
  • Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M., 2010. Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches. In: Bungartz, H.-J., Mehl, M., Schäfer, M. (Eds.), Fluid-Structure Interaction II – Modelling, Simulation, Optimization. Vol. 73 of Lecture Notes in Computational Science and Engineering, LNCSE. Springer, Heidelberg, pp. 413–424.
  • Wall, W. A., 1999. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. Ph.D. thesis, Institut für Baustatik, Universität Stuttgart, Germany.
  • Wall, W. A., Ramm, E., 1998. Fluid-structure interaction based upon a stabilized (ALE) finite element method. IV World Congress on Computational Mechanics, Barcelona.
  • Wüchner, R., Bletzinger, K.-U., 2005. Stress-adapted numerical form finding of pre-stressed surfaces by the updated reference strategy. Int. Journal for Numerical Methods in Engineering 64 (2), 143–166.
  • Yamamoto, C., Meneghini, J., Saltara, F., Fregonesi, R., Ferrari, J., 2004. Numerical simulations of vortex-induced vibration on flexible cylinders. Journal of Fluids and Structures 19 (4), 467–489.


Contributed by: G. De Nayer, A. Kalmbach, M. Breuer — Helmut-Schmidt Universität Hamburg (with support by S. Sicklinger and R. Wüchner from Technische Universität München)


Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2021