Description AC2-10

From KBwiki
Jump to navigation Jump to search

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice

Internal combustion engine flows for motored operation

Application Challenge AC2-10   © copyright ERCOFTAC 2024

Abbreviations

Table 1: Mesh resolution study details for the high-Reynolds number and low-Reynolds number models
Mesh Strut Guide vane Runner Draft tube Total
High-Reynolds Coarse 3 × 105 7 × 105 7.6 × 105 1 × 106 2.76 × 106
High-Reynolds Fine 3 × 105 8 × 105 1.1 × 106 2.85 × 106 5.05 × 106
Low-Reynolds Coarse 9.3 × 105 1.13 × 106 1.35 × 106 3.41 × 106
Low-Reynolds Fine 9.3 × 105 1.13 × 106 2.66 × 106 4.72 × 106
bTDC||before top dead center BDC||bottom dead center CA||crank angle CAD||crank angle degreeCCD charge-coupled device CCV||cycle-to-cycle variation CDS||central differencing scheme CFD||computational fluid dynamics CFL||Courant-Friedrichs-Lewy ENO||Essentially Non-Oscillatory ERG||exhaust-gas-recirculation EVC||exhaust valve closing EVO||exhaust valve opening HS-PIV||high speed particle image velocimetry IC||internal combustion IVC||intake valve closing IVO||intake valve opening LES||large eddy simulation MRV||magnetic resonance velocimetry PIV||particle image velocimetry POV||field-of-view QSOU||quasi-second-order upwind QUICK||Quadratic Upwind Interpolation for Convective Kinematics RANS||Reynolds-averaged Navier-Stokes RMS||root mean square RPM||rounds per minute SAS||scale-adaptive simulation SRS||scale-resolving simulation SST||shear stress transport TDC||top dead center TUBF||Technische Universität Bergakademie Freiberg TUD||Technische Universität Darmstadt TVD||total variation diminishing UDE||Universität Duisburg-Essen URANS||unsteady Reynolds-averaged Navier-Stokes WG||wall-guided
ALE Arbitrary Lagrangian-Eulerian
aTDC after top dead center

Introduction

The TU Darmstadt engine is an optically accessible single cylinder spark-ignition direct injection engine. It is embedded in an especially designed test bench to provide well characterized boundary conditions and reproducible engine operation. A reproducible engine operation is needed to characterize the variety of in-cylinder processes and is a prerequisite for any comparison of experiments and simulations. The in-cylinder processes are characterized using advanced laser-diagnostics to provide measurements at high spatial and temporal resolutions. The aim of this effort is, to build up a comprehensive data set

  • to give insights into the underlying physics for a better understanding of the relevant in-cylinder processes and
  • for the validation of CFD simulations especially for large eddy simulations (LES).

blah



Contributed by: Carl Philip Ding,Rene Honza, Elias Baum, Andreas Dreizler — Fachgebiet Reaktive Strömungen und Messtechnik (RSM),Technische Universität Darmstadt, Germany


Contributed by: Brian Peterson — School of Engineering, University of Edinburgh, Scotland UK


Contributed by: Chao He , Wibke Leudesdorff, Guido Kuenne, Benjamin Böhm, Amsini Sadiki, Johannes Janicka — Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Germany


Contributed by: Peter Janas, Andreas Kempf — Institut für Verbrennung und Gasdynamik (IVG), Lehrstuhl für Fluiddynamik, Universität Duisburg-Essen, Germany


Contributed by: Stefan Buhl, Christian Hasse — Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS), Technische Universität Darmstadt, Germany; former: Professur Numerische Thermofluiddynamik (NTFD), Technische Universität Bergakademie Freiberg, Germany

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice


© copyright ERCOFTAC 2018