Jump to navigation Jump to search
m (moved UFR 3-32 to Lib:UFR 3-32)
 
(11 intermediate revisions by 2 users not shown)
Line 9: Line 9:
=== Underlying Flow Regime 3-32 ===
=== Underlying Flow Regime 3-32 ===
= Abstract =
= Abstract =
 
The interaction between a shock wave and a  boundary  layer  remains  an
{{Demo_UFR_Guidance}}
issue  for  both  applications  and  basic  research.  In  aeronautical
situations, such interactions are at the origin  of  unsteadiness  which
may be  detrimental  for  air  frames  and  mechanical  structures.  The
understanding  of  such  phenomena  is  not  always  clear  because  the
frequencies involved in  the  unsteadiness  are  much  below  any  other
characteristic frequency in the flow (see [[UFR_3-32_References#3|Dolling  2001]]
and  [[UFR_3-32_References#14|Smits  and Dussauge 2006]]  for  reviews).
Only  a  few  interpretations  have  been
proposed, although recent attempts  seem  to  offer  more  comprehensive
views (see [[UFR_3-32_References#5|Dupont, Debiève, Dussauge 2011]] for example).
A  severe  test
case is proposed in the European  program  UFAST  (Unsteady  eFfects  of
shock  wAve  induced  SeparaTion)  to  illustrate  this  problem:  the
reflection of an oblique shock on the turbulent boundary layer of a flat
plate at a Mach  number  of  2.25,  at  different  angles  of  deviation
producing different cases of separation. This well documented experiment
is presented, including mean and turbulent  flow  measurements  together
with spectral measurements to determine the dominant frequencies of  the
unsteadiness.
Of course a RANS model can only provide a global description
of mean quantities. More advanced  models  like  LES  or  DES  have  the
ability to capture  the  unsteadiness.  Comparisons  with  LES  and  DES
numerical simulations are presented and  discussed,  and  best  practice
guidelines are proposed.  These  studies  are  available  in  the  UFAST
database, as published in [[UFR_3-32_References#1|Doerffer 2009]]
and in [[UFR_3-32_References#2|Doerffer ''et al.'' 2010]].
<br/>
<br/>
----
----
{{ACContribs
{{ACContribs
|authors=Jean-Paul Dussauge
|authors=Jean-Paul Dussauge (*), P. Dupont (*) , N. Sandham (**), E. Garnier (***)
|organisation=Orange
|organisation= (*)&nbsp;Aix-Marseille Université, and Centre National de la Recherche Scientifique UM 7343, (**)&nbsp;University of Southampton, (***)&nbsp;ONERA/DAAP, Meudon, France
}}
}}
{{UFRHeader
{{UFRHeader

Latest revision as of 18:07, 11 November 2013

Planar shock-wave boundary-layer interaction

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Semi-confined Flows

Underlying Flow Regime 3-32

Abstract

The interaction between a shock wave and a boundary layer remains an issue for both applications and basic research. In aeronautical situations, such interactions are at the origin of unsteadiness which may be detrimental for air frames and mechanical structures. The understanding of such phenomena is not always clear because the frequencies involved in the unsteadiness are much below any other characteristic frequency in the flow (see Dolling 2001 and Smits and Dussauge 2006 for reviews). Only a few interpretations have been proposed, although recent attempts seem to offer more comprehensive views (see Dupont, Debiève, Dussauge 2011 for example). A severe test case is proposed in the European program UFAST (Unsteady eFfects of shock wAve induced SeparaTion) to illustrate this problem: the reflection of an oblique shock on the turbulent boundary layer of a flat plate at a Mach number of 2.25, at different angles of deviation producing different cases of separation. This well documented experiment is presented, including mean and turbulent flow measurements together with spectral measurements to determine the dominant frequencies of the unsteadiness. Of course a RANS model can only provide a global description of mean quantities. More advanced models like LES or DES have the ability to capture the unsteadiness. Comparisons with LES and DES numerical simulations are presented and discussed, and best practice guidelines are proposed. These studies are available in the UFAST database, as published in Doerffer 2009 and in Doerffer et al. 2010.



Contributed by: Jean-Paul Dussauge (*), P. Dupont (*) , N. Sandham (**), E. Garnier (***) — (*) Aix-Marseille Université, and Centre National de la Recherche Scientifique UM 7343, (**) University of Southampton, (***) ONERA/DAAP, Meudon, France

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024