UFR 3-08 References: Difference between revisions
Jump to navigation
Jump to search
3D boundary layers under various pressure gradients,
m (UFR 3-08 References moved to Silver:UFR 3-08 References) |
m (Dave.Ellacott moved page Silver:UFR 3-08 References to UFR 3-08 References over redirect) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{UFR|front=UFR 3-08|description=UFR 3-08 Description|references=UFR 3-08 References|testcase=UFR 3-08 Test Case|evaluation=UFR 3-08 Evaluation|qualityreview=UFR 3-08 Quality Review|bestpractice=UFR 3-08 Best Practice Advice|relatedACs=UFR 3-08 Related ACs}} | {{UFR|front=UFR 3-08|description=UFR 3-08 Description|references=UFR 3-08 References|testcase=UFR 3-08 Test Case|evaluation=UFR 3-08 Evaluation|qualityreview=UFR 3-08 Quality Review|bestpractice=UFR 3-08 Best Practice Advice|relatedACs=UFR 3-08 Related ACs}} | ||
Line 57: | Line 56: | ||
{{UFR|front=UFR 3-08|description=UFR 3-08 Description|references=UFR 3-08 References|testcase=UFR 3-08 Test Case|evaluation=UFR 3-08 Evaluation|qualityreview=UFR 3-08 Quality Review|bestpractice=UFR 3-08 Best Practice Advice|relatedACs=UFR 3-08 Related ACs}} | {{UFR|front=UFR 3-08|description=UFR 3-08 Description|references=UFR 3-08 References|testcase=UFR 3-08 Test Case|evaluation=UFR 3-08 Evaluation|qualityreview=UFR 3-08 Quality Review|bestpractice=UFR 3-08 Best Practice Advice|relatedACs=UFR 3-08 Related ACs}} | ||
Latest revision as of 12:59, 12 February 2017
3D boundary layers under various pressure gradients,
including severe adverse pressure gradient causing
separation
Underlying Flow Regime 3-08 © copyright ERCOFTAC 2004
References
- Alam M. and Sandham N. D. (2000). Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, pp.1-28
- Alving A. E. and Fernholz H. H. (1996).Turbulent measurements around a mild separation bubble and downstream of reattachment. J. Fluid Mech. 322, pp.297-328
- Castillo L. and George W. K. Similarity analysis for turbulent boundary layer with pressure gradient : outer flow. AIAA 39 (1), pp.41-47
- De Graaf D. B. and Eaton J. K. (1999). Reynolds number scaling of the turbulent boundary layer on a flat plate and on swept and unswept bumps. Technical Report TSD-118, Stanford University
- Durbin P. A. (1995). Separated flow computations with the κ-ε-v2 model. AIAA J. 33,pp. 659-664
- Durbin P. A. and Laurence D. (1996). Non-local effects in single point closure. Advances in Turbulence Research, Seoul, Korea, May 17, 1996, pp. 109-120
- Gibson M. M. and Launder B. E. (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, p. 491
- Haase W., Chaput E., Elsholz E., Leschziner M., Schwamborn D. (Eds.) (1997). ECARP: European Computational Aerodynamics Research Project Validation and Assessment of Turbulence Models. Notes on Numerical Fluid Dynamics, 58, Vieweg Verlag .
- Hanjalic K., Hadzic I. and Jakirlic S. (1999). Modeling turbulent wall flows subject to strong pressure variations. J. Fluids Engineering 121, pp. 57-64
- Howard R. J. A., Alam M. A. and Saudham N. D. (2000). Two-equation turbulence modeling of a transitional separation bubble. J. of Flow Turb. and Comb. 63, pp. 175-191
- Kreplin, H. P. (1995). Three-dimensional boundary layer and flow field data of an inclined prolate spheroid. AGARD FDP WG-14 Experimental test cases for C FD validation, Test Case ID: GE-20
- Launder B. E. and Kato M. (1993). Modeling flow-induced oscillations in turbulent flow around a square cylinder. ASME FED. 157, pp. 189-199
- Lien F. S. (1996). High performance computing of turbulent flows. High Performance Computing in Fluid Dynamics, pp. 201-236, P. Wessling ed.
- Lien F. S. and Leschziner M. A. (1993). Computational modelling of 3D turbulent flow in S-diffuser and transition ducts. Engineering Turbulence Modelling and Measurements 2., p.217, Elsevier Amsterdam
- Lien F. S., Chen W. L. and Leschziner M. A. (1995). Low-Reynolds-number eddy viscosity modelling based on non-linear stress-strain/vorticity relations. Proc. 3rd Int. Symp. On Engineering Turbulence Modelling and Measurements, May 27-29, 1996, Crete, Greece.
- Lien F. S. and Durbin P. A. (1996). Non linear κ-ε-v2 modeling with application to high-lift. Proceedings of the Summer Program 1996, Center for Turbulence Research, pp. 5-22
- Lien F. S. and Leschziner M. A. (1996). Second-moment closure for three-dimensional turbulent flow around and within complex geometries. Computers & Fluid, Vol. 25, No.3, pp. 237-262
- Meier H. U., Kreplin H. P., Landhhäuser A., Baumgarten D. (1984). Mean velocity distributions in three-dimensional boundary layers developing on a 1:6 prolate spheroid with artificial transition. Data report IB222-84 A11
- Meier H. U., Kreplin H. P., Landhhäuser A. (1986). Wall pressure measurements on a 1:6 prolate spheroid in the DFVLR 3m x 3m low speed wind tunnel. Data report IB222-86 A 04
- Na Y. and Moin P. (1998). Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 370, pp.175-201
- Perry A. E. and Schofield W. H. (1973). Mean velocity and shear stress distributions in turbulent boundary layers. Phys. Fluids 16, pp.2068-2074
- Samuel A. E. and Joubert P. N. (1974). A boundary layer developing in an increasingly adverse pressure gradient. J. Fluid Mech. 66, pp.481-505
- Schofield W. H. (1981). Equilibrium boundary layers in moderate to strong adverse pressure gradients. J. Fluid Mech. 113, pp.91-122
- Shiloh B. H., Shivaprasad B. G. and Simpson R. L (1981). The structure of a separating turbulent boundary layer. Part 3 Transverse velocity measurements. J. Fluid Mech. 113, pp.75-90
- Simpson R. L., Chew Y. T. and Shivaprasad B. G. (1981). The structure of a separating turbulent boundary layer. Part 1 Mean flow and Reynolds stresses. J. Fluid Mech. 113, pp.23-51
- Simpson R. L., Chew Y. T. and Shivaprasad B. G. (1981). The structure of a separating turbulent boundary layer. Part 2 High order turbulent results. J. Fluid Mech. 113, pp.53-73
- Song S. and Eaton J. K. (2002). Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. Technical Report TSD-146, Stanford University
- Spalart P. R. (1986). Numerical study of sink flow boundary layers. J. Fluid Mech. 172, pp.307-328
- Spalart P. R. and Leonard A. (1986). Direct numerical simulation of equilibrium turbulent boundary layers. Turbulent Shear Flows 5 edited by F.J. Durst et al., Ithaca, Springer
- Spalart P. R. and Watmuff J. H. (1993). Experimental and numerical studies of a turbulent boundary layer with pressure gradient. J. Fluid Mech. 249, pp.337-371
- Spalart, P. R., Coleman, G. N. (1997). Numerical study of heat transfer in a separation bubble. European Journal of Mechanics - B/Fluids 2
- Spalart P. R. and Strelets M. Kh. (2000). Mechanism of transition and heat transfer is a separation bubble. J. Fluid Mech. 403, pp.329-349
- Watmuff J. H. (1989). An experimental investigation of a low Reynolds number turbulent boundary layer subject to an adverse pressure gradient. Annual Research Briefs, Center for Turbulence Research, pp. 37-39
© copyright ERCOFTAC 2004
Contributors: Pietro Catalano - CIRA