UFR 3-08 References: Difference between revisions

From KBwiki
Jump to navigation Jump to search
m (Dave.Ellacott moved page Silver:UFR 3-08 References to UFR 3-08 References over redirect)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{UFR|front=UFR 3-08|description=UFR 3-08 Description|references=UFR 3-08 References|testcase=UFR 3-08 Test Case|evaluation=UFR 3-08 Evaluation|qualityreview=UFR 3-08 Quality Review|bestpractice=UFR 3-08 Best Practice Advice|relatedACs=UFR 3-08 Related ACs}}
{{UFR|front=UFR 3-08|description=UFR 3-08 Description|references=UFR 3-08 References|testcase=UFR 3-08 Test Case|evaluation=UFR 3-08 Evaluation|qualityreview=UFR 3-08 Quality Review|bestpractice=UFR 3-08 Best Practice Advice|relatedACs=UFR 3-08 Related ACs}}


Line 57: Line 56:


{{UFR|front=UFR 3-08|description=UFR 3-08 Description|references=UFR 3-08 References|testcase=UFR 3-08 Test Case|evaluation=UFR 3-08 Evaluation|qualityreview=UFR 3-08 Quality Review|bestpractice=UFR 3-08 Best Practice Advice|relatedACs=UFR 3-08 Related ACs}}
{{UFR|front=UFR 3-08|description=UFR 3-08 Description|references=UFR 3-08 References|testcase=UFR 3-08 Test Case|evaluation=UFR 3-08 Evaluation|qualityreview=UFR 3-08 Quality Review|bestpractice=UFR 3-08 Best Practice Advice|relatedACs=UFR 3-08 Related ACs}}
[[Category:Underlying Flow Regime]]

Latest revision as of 12:59, 12 February 2017

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References




3D boundary layers under various pressure gradients,
including severe adverse pressure gradient causing
separation

Underlying Flow Regime 3-08               © copyright ERCOFTAC 2004


References

  1. Alam M. and Sandham N. D. (2000). Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, pp.1-28
  2. Alving A. E. and Fernholz H. H. (1996).Turbulent measurements around a mild separation bubble and downstream of reattachment. J. Fluid Mech. 322, pp.297-328
  3. Castillo L. and George W. K. Similarity analysis for turbulent boundary layer with pressure gradient : outer flow. AIAA 39 (1), pp.41-47
  4. De Graaf D. B. and Eaton J. K. (1999). Reynolds number scaling of the turbulent boundary layer on a flat plate and on swept and unswept bumps. Technical Report TSD-118, Stanford University
  5. Durbin P. A. (1995). Separated flow computations with the κ-ε-v2 model. AIAA J. 33,pp. 659-664
  6. Durbin P. A. and Laurence D. (1996). Non-local effects in single point closure. Advances in Turbulence Research, Seoul, Korea, May 17, 1996, pp. 109-120
  7. Gibson M. M. and Launder B. E. (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, p. 491
  8. Haase W., Chaput E., Elsholz E., Leschziner M., Schwamborn D. (Eds.) (1997). ECARP: European Computational Aerodynamics Research Project Validation and Assessment of Turbulence Models. Notes on Numerical Fluid Dynamics, 58, Vieweg Verlag .
  9. Hanjalic K., Hadzic I. and Jakirlic S. (1999). Modeling turbulent wall flows subject to strong pressure variations. J. Fluids Engineering 121, pp. 57-64
  10. Howard R. J. A., Alam M. A. and Saudham N. D. (2000). Two-equation turbulence modeling of a transitional separation bubble. J. of Flow Turb. and Comb. 63, pp. 175-191
  11. Kreplin, H. P. (1995). Three-dimensional boundary layer and flow field data of an inclined prolate spheroid. AGARD FDP WG-14 Experimental test cases for C FD validation, Test Case ID: GE-20
  12. Launder B. E. and Kato M. (1993). Modeling flow-induced oscillations in turbulent flow around a square cylinder. ASME FED. 157, pp. 189-199
  13. Lien F. S. (1996). High performance computing of turbulent flows. High Performance Computing in Fluid Dynamics, pp. 201-236, P. Wessling ed.
  14. Lien F. S. and Leschziner M. A. (1993). Computational modelling of 3D turbulent flow in S-diffuser and transition ducts. Engineering Turbulence Modelling and Measurements 2., p.217, Elsevier Amsterdam
  15. Lien F. S., Chen W. L. and Leschziner M. A. (1995). Low-Reynolds-number eddy viscosity modelling based on non-linear stress-strain/vorticity relations. Proc. 3rd Int. Symp. On Engineering Turbulence Modelling and Measurements, May 27-29, 1996, Crete, Greece.
  16. Lien F. S. and Durbin P. A. (1996). Non linear κ-ε-v2 modeling with application to high-lift. Proceedings of the Summer Program 1996, Center for Turbulence Research, pp. 5-22
  17. Lien F. S. and Leschziner M. A. (1996). Second-moment closure for three-dimensional turbulent flow around and within complex geometries. Computers & Fluid, Vol. 25, No.3, pp. 237-262
  18. Meier H. U., Kreplin H. P., Landhhäuser A., Baumgarten D. (1984). Mean velocity distributions in three-dimensional boundary layers developing on a 1:6 prolate spheroid with artificial transition. Data report IB222-84 A11
  19. Meier H. U., Kreplin H. P., Landhhäuser A. (1986). Wall pressure measurements on a 1:6 prolate spheroid in the DFVLR 3m x 3m low speed wind tunnel. Data report IB222-86 A 04
  20. Na Y. and Moin P. (1998). Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 370, pp.175-201
  21. Perry A. E. and Schofield W. H. (1973). Mean velocity and shear stress distributions in turbulent boundary layers. Phys. Fluids 16, pp.2068-2074
  22. Samuel A. E. and Joubert P. N. (1974). A boundary layer developing in an increasingly adverse pressure gradient. J. Fluid Mech. 66, pp.481-505
  23. Schofield W. H. (1981). Equilibrium boundary layers in moderate to strong adverse pressure gradients. J. Fluid Mech. 113, pp.91-122
  24. Shiloh B. H., Shivaprasad B. G. and Simpson R. L (1981). The structure of a separating turbulent boundary layer. Part 3 Transverse velocity measurements. J. Fluid Mech. 113, pp.75-90
  25. Simpson R. L., Chew Y. T. and Shivaprasad B. G. (1981). The structure of a separating turbulent boundary layer. Part 1 Mean flow and Reynolds stresses. J. Fluid Mech. 113, pp.23-51
  26. Simpson R. L., Chew Y. T. and Shivaprasad B. G. (1981). The structure of a separating turbulent boundary layer. Part 2 High order turbulent results. J. Fluid Mech. 113, pp.53-73
  27. Song S. and Eaton J. K. (2002). Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. Technical Report TSD-146, Stanford University
  28. Spalart P. R. (1986). Numerical study of sink flow boundary layers. J. Fluid Mech. 172, pp.307-328
  29. Spalart P. R. and Leonard A. (1986). Direct numerical simulation of equilibrium turbulent boundary layers. Turbulent Shear Flows 5 edited by F.J. Durst et al., Ithaca, Springer
  30. Spalart P. R. and Watmuff J. H. (1993). Experimental and numerical studies of a turbulent boundary layer with pressure gradient. J. Fluid Mech. 249, pp.337-371
  31. Spalart, P. R., Coleman, G. N. (1997). Numerical study of heat transfer in a separation bubble. European Journal of Mechanics - B/Fluids 2
  32. Spalart P. R. and Strelets M. Kh. (2000). Mechanism of transition and heat transfer is a separation bubble. J. Fluid Mech. 403, pp.329-349
  33. Watmuff J. H. (1989). An experimental investigation of a low Reynolds number turbulent boundary layer subject to an adverse pressure gradient. Annual Research Briefs, Center for Turbulence Research, pp. 37-39

© copyright ERCOFTAC 2004



Contributors: Pietro Catalano - CIRA


Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References