AC Index: Difference between revisions

From KBwiki
Jump to navigation Jump to search
No edit summary
No edit summary
(4 intermediate revisions by the same user not shown)
Line 38: Line 38:
!  !! style="background-color:LightGrey;"|2-09
!  !! style="background-color:LightGrey;"|2-09
| style="background:LightGrey;"|[[SANDIA Flame D]]<!--[[Image:Star_red.jpg]]-->||style="background-color:LightGrey;"| Andrzej Boguslawski, Artur  Tyliszczak|| style="background-color:LightGrey;"|Częstochowa University of Technology
| style="background:LightGrey;"|[[SANDIA Flame D]]<!--[[Image:Star_red.jpg]]-->||style="background-color:LightGrey;"| Andrzej Boguslawski, Artur  Tyliszczak|| style="background-color:LightGrey;"|Częstochowa University of Technology
|- style="background-color:#AED7FF;"
!  !! style="background-color:LightGrey;"|2-10
| style="background:LightGrey;"|[[Internal combustion engine flows for motored operation]] ||style="background-color:LightGrey;"| Carl Philip Ding ''et al.'' ||style="background-color:LightGrey;"| Technische Universit&auml;t Darmstadt
|- style="background-color:#AED7FF;"
!  !! style="background-color:LightGrey;"|2-11
| style="background:LightGrey;"| [[AC2-11|Delft-Jet-in-Hot-Coflow (DJHC) burner]] ||style="background-color:LightGrey;"|Andr&eacute; Perpignan ''et al.''||style="background-color:LightGrey;"| TU Delft


|- style="background-color:#AED7FF;"  
|- style="background-color:#AED7FF;"  
Line 105: Line 113:
| style="background-color:LightGrey;"|[[Steam turbine rotor cascade]] || style="background-color:LightGrey;"| Jaromir Prihoda || style="background-color:LightGrey;"| Czech Academy of Sciences
| style="background-color:LightGrey;"|[[Steam turbine rotor cascade]] || style="background-color:LightGrey;"| Jaromir Prihoda || style="background-color:LightGrey;"| Czech Academy of Sciences
|- style="background-color:#AED7FF;"  
|- style="background-color:#AED7FF;"  
!  !! style="background-color:silver;"|6-14
!  !! style="background-color:LightGrey;"|6-14
| style="background-color:silver;"|[[AC6-14|Swirling flow in a conical diffuser generated with rotor-stator interaction]] [[Image:Star_red.jpg]] || style="background-color:silver;"| A. Javadi ''et al'' || style="background-color:silver;"| Chalmers University of Technology, G&ouml;teborg, Sweden;
| style="background-color:LightGrey;"|[[AC6-14|Swirling flow in a conical diffuser generated with rotor-stator interaction]] <!--[[Image:Star_red.jpg]]-->|| style="background-color:LightGrey;"| A. Javadi ''et al'' || style="background-color:LightGrey;"| Chalmers University of Technology, G&ouml;teborg, Sweden;
|- style="background-color:#AED7FF;"
! !! style="background-color:LightGrey;"|6-15
| style="background-color:LightGrey;"|[[AC6-15|Vortex ropes in draft tube of a laboratory Kaplan hydro turbine at low load]] || style="background-color:LightGrey;"|A.V. Minakov ''et al.'' || style="background-color:LightGrey;"| Institute of Thermophysics SB RAS, Novosibirsk, Russia
|}
|}

Revision as of 12:18, 25 February 2019

Application Area AC number Application Challenges Contributor Organisation
External Aerodynamics
1-01 Aero-acoustic cavity Fred Mendonca Computational Dynamics Ltd
1-02 RAE M2155 Wing Pietro Catalano, Anthony Hutton CIRA, Qinetiq
1-05 Ahmed body Jean-Paul Bonnet, Remi Manceau Université de Poitiers
1-08 L1T2 3 element airfoil Jan Vos, Anthony Hutton CFS Engineering SA, Qinetiq
1-09 Vortex breakdown above a delta wing with sharp leading edge Johan Kok et al. NLR
Combustion
2-01 Bluff body burner for CH4-HE turbulent combustion Elisabetta Belardini Universita di Firenze
2-06 The confined TECFLAM swirling natural gas burner Stefan Hohmann MTU Aero Engines
2-07 Confined double annular jet Charles Hirsch Vrije Universiteit Brussel
2-08 Premixed Methane-Air Swirl Burner (TECFLAM) Guido Kuenne, Andreas Dreizler, Johannes Janicka Darmstadt University of Technology
2-09 SANDIA Flame D Andrzej Boguslawski, Artur Tyliszczak Częstochowa University of Technology
2-10 Internal combustion engine flows for motored operation Carl Philip Ding et al. Technische Universität Darmstadt
2-11 Delft-Jet-in-Hot-Coflow (DJHC) burner André Perpignan et al. TU Delft
Chemical & Process, Thermal Hydraulics & Nuclear Safety
3-01 Buoyancy-opposed wall jet Jeremy Noyce Magnox Electric
3-02 Induced flow in a T-junction Frederic Archambeau EDF - R&D Division
3-03 Cyclone separator Chris Carey Fluent Europe Ltd
3-08 Spray evaporation in turbulent flow Martin Sommerfeld Martin-Luther-Universitat Halle-Wittenberg
3-10 Combining/dividing flow in Y junction Lewis Davenport Rolls-Royce Marine Power, Engineering & Technology Division
3-11 Downward flow in a heated annulus Mike Rabbitt British Energy
3-12 Particle-laden swirling flow Martin Sommerfeld Martin-Luther-Universitat Halle-Wittenberg
Civil Construction & HVAC
4-01 Wind environment around an airport terminal building Steve Gilham, Athena Scaperdas Atkins
4-02 Flow and Sediment Transport in a Laboratory Model of a stretch of the Elbe River Wolfgang Rodi Universität Karlsruhe
4-03 Air flows in an open plan air conditioned office Isabelle Lavedrine, Darren Woolf Arup
4-04 Tunnel fire Nicholas Waterson Mott MacDonald Ltd
Environmental Flows
5-05 Boundary layer flow and dispersion over isolated hills and valleys Ian Castro University of Southampton
Turbo-machinary Internal Flows
6-02 Low-speed centrifugal compressor Nouredine Hakimi NUMECA International
6-05 Annular compressor cascade with tip clearance K. Papailiou NTUA
6-06 Gas Turbine nozzle cascade Elisabetta Belardini, Francesco Martelli Universita di Firenze
6-07 Draft tube Jan Eriksson, Rolf Karlsson Vattenfall Utveckling AB
6-08 High speed centrifugal compressor Beat Ribi, Michael Casey MAN Turbomaschinen AG Schweiz , Sulzer Innotec AG
6-10 Axial compressor cascade Fred Mendonca Computational Dynamics Ltd
6-12 Steam turbine rotor cascade Jaromir Prihoda Czech Academy of Sciences
6-14 Swirling flow in a conical diffuser generated with rotor-stator interaction A. Javadi et al Chalmers University of Technology, Göteborg, Sweden;
6-15 Vortex ropes in draft tube of a laboratory Kaplan hydro turbine at low load A.V. Minakov et al. Institute of Thermophysics SB RAS, Novosibirsk, Russia